Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Multi-Step Regression Learning for Compositional Distributional Semantics (1301.6939v2)

Published 29 Jan 2013 in cs.CL and cs.LG

Abstract: We present a model for compositional distributional semantics related to the framework of Coecke et al. (2010), and emulating formal semantics by representing functions as tensors and arguments as vectors. We introduce a new learning method for tensors, generalising the approach of Baroni and Zamparelli (2010). We evaluate it on two benchmark data sets, and find it to outperform existing leading methods. We argue in our analysis that the nature of this learning method also renders it suitable for solving more subtle problems compositional distributional models might face.

Citations (145)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.