Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probabilistic Belief Change: Expansion, Conditioning and Constraining (1301.6746v1)

Published 23 Jan 2013 in cs.AI

Abstract: The AGM theory of belief revision has become an important paradigm for investigating rational belief changes. Unfortunately, researchers working in this paradigm have restricted much of their attention to rather simple representations of belief states, namely logically closed sets of propositional sentences. In our opinion, this has resulted in a too abstract categorisation of belief change operations: expansion, revision, or contraction. Occasionally, in the AGM paradigm, also probabilistic belief changes have been considered, and it is widely accepted that the probabilistic version of expansion is conditioning. However, we argue that it may be more correct to view conditioning and expansion as two essentially different kinds of belief change, and that what we call constraining is a better candidate for being considered probabilistic expansion.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube