Papers
Topics
Authors
Recent
2000 character limit reached

On the Complexity of Policy Iteration (1301.6718v1)

Published 23 Jan 2013 in cs.AI

Abstract: Decision-making problems in uncertain or stochastic domains are often formulated as Markov decision processes (MDPs). Policy iteration (PI) is a popular algorithm for searching over policy-space, the size of which is exponential in the number of states. We are interested in bounds on the complexity of PI that do not depend on the value of the discount factor. In this paper we prove the first such non-trivial, worst-case, upper bounds on the number of iterations required by PI to converge to the optimal policy. Our analysis also sheds new light on the manner in which PI progresses through the space of policies.

Citations (99)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.