Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Clustering-Based Matrix Factorization (1301.6659v4)

Published 28 Jan 2013 in cs.LG

Abstract: Recommender systems are emerging technologies that nowadays can be found in many applications such as Amazon, Netflix, and so on. These systems help users to find relevant information, recommendations, and their preferred items. Slightly improvement of the accuracy of these recommenders can highly affect the quality of recommendations. Matrix Factorization is a popular method in Recommendation Systems showing promising results in accuracy and complexity. In this paper we propose an extension of matrix factorization which adds general neighborhood information on the recommendation model. Users and items are clustered into different categories to see how these categories share preferences. We then employ these shared interests of categories in a fusion by Biased Matrix Factorization to achieve more accurate recommendations. This is a complement for the current neighborhood aware matrix factorization models which rely on using direct neighborhood information of users and items. The proposed model is tested on two well-known recommendation system datasets: Movielens100k and Netflix. Our experiment shows applying the general latent features of categories into factorized recommender models improves the accuracy of recommendations. The current neighborhood-aware models need a great number of neighbors to acheive good accuracies. To the best of our knowledge, the proposed model is better than or comparable with the current neighborhood-aware models when they consider fewer number of neighbors.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.