Papers
Topics
Authors
Recent
2000 character limit reached

Neural Networks Built from Unreliable Components (1301.6265v4)

Published 26 Jan 2013 in cs.NE, cs.IT, and math.IT

Abstract: Recent advances in associative memory design through strutured pattern sets and graph-based inference algorithms have allowed the reliable learning and retrieval of an exponential number of patterns. Both these and classical associative memories, however, have assumed internally noiseless computational nodes. This paper considers the setting when internal computations are also noisy. Even if all components are noisy, the final error probability in recall can often be made exceedingly small, as we characterize. There is a threshold phenomenon. We also show how to optimize inference algorithm parameters when knowing statistical properties of internal noise.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.