Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving the lifecycle of robotics components using Domain-Specific Languages (1301.6022v1)

Published 25 Jan 2013 in cs.RO and cs.SE

Abstract: There is currently a large amount of robotics software using the component-oriented programming paradigm. However, the rapid growth in number and complexity of components may compromise the scalability and the whole lifecycle of robotics software systems. Model-Driven Engineering can be used to mitigate these problems. This paper describes how using Domain-Specific Languages to generate and describe critical parts of robotic systems helps developers to perform component managerial tasks such as component creation, modification, monitoring and deployment. Four different DSLs are proposed in this paper: i) CDSL for specifying the structure of the components, ii) IDSL for the description of their interfaces, iii) DDSL for describing the deployment process of component networks and iv) PDSL to define and configure component parameters. Their benefits have been demonstrated after their implementation in RoboComp, a general-purpose and component-based robotics framework. Examples of the usage of these DSLs are shown along with experiments that demonstrate the benefits they bring to the lifecycle of the components.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube