Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Regularization and nonlinearities for neural language models: when are they needed? (1301.5650v2)

Published 23 Jan 2013 in stat.ML and cs.LG

Abstract: Neural LMs based on recurrent neural networks (RNN) are some of the most successful word and character-level LMs. Why do they work so well, in particular better than linear neural LMs? Possible explanations are that RNNs have an implicitly better regularization or that RNNs have a higher capacity for storing patterns due to their nonlinearities or both. Here we argue for the first explanation in the limit of little training data and the second explanation for large amounts of text data. We show state-of-the-art performance on the popular and small Penn dataset when RNN LMs are regularized with random dropout. Nonetheless, we show even better performance from a simplified, much less expressive linear RNN model without off-diagonal entries in the recurrent matrix. We call this model an impulse-response LM (IRLM). Using random dropout, column normalization and annealed learning rates, IRLMs develop neurons that keep a memory of up to 50 words in the past and achieve a perplexity of 102.5 on the Penn dataset. On two large datasets however, the same regularization methods are unsuccessful for both models and the RNN's expressivity allows it to overtake the IRLM by 10 and 20 percent perplexity, respectively. Despite the perplexity gap, IRLMs still outperform RNNs on the Microsoft Research Sentence Completion (MRSC) task. We develop a slightly modified IRLM that separates long-context units (LCUs) from short-context units and show that the LCUs alone achieve a state-of-the-art performance on the MRSC task of 60.8%. Our analysis indicates that a fruitful direction of research for neural LMs lies in developing more accessible internal representations, and suggests an optimization regime of very high momentum terms for effectively training such models.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.