Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minimax Filtering via Relations between Information and Estimation (1301.5096v4)

Published 22 Jan 2013 in cs.IT and math.IT

Abstract: We investigate the problem of continuous-time causal estimation under a minimax criterion. Let $XT = {X_t,0\leq t\leq T}$ be governed by the probability law $P_{\theta}$ from a class of possible laws indexed by $\theta \in \Lambda$, and $YT$ be the noise corrupted observations of $XT$ available to the estimator. We characterize the estimator minimizing the worst case regret, where regret is the difference between the causal estimation loss of the estimator and that of the optimum estimator. One of the main contributions of this paper is characterizing the minimax estimator, showing that it is in fact a Bayesian estimator. We then relate minimax regret to the channel capacity when the channel is either Gaussian or Poisson. In this case, we characterize the minimax regret and the minimax estimator more explicitly. If we further assume that the uncertainty set consists of deterministic signals, the worst case regret is exactly equal to the corresponding channel capacity, namely the maximal mutual information attainable across the channel among all possible distributions on the uncertainty set of signals. The corresponding minimax estimator is the Bayesian estimator assuming the capacity-achieving prior. Using this relation, we also show that the capacity achieving prior coincides with the least favorable input. Moreover, we show that this minimax estimator is not only minimizing the worst case regret but also essentially minimizing regret for "most" of the other sources in the uncertainty set. We present a couple of examples for the construction of an minimax filter via an approximation of the associated capacity achieving distribution.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.