Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Recurrent Neural Network Method in Arabic Words Recognition System (1301.4662v1)

Published 20 Jan 2013 in cs.NE

Abstract: The recognition of unconstrained handwriting continues to be a difficult task for computers despite active research for several decades. This is because handwritten text offers great challenges such as character and word segmentation, character recognition, variation between handwriting styles, different character size and no font constraints as well as the background clarity. In this paper primarily discussed Online Handwriting Recognition methods for Arabic words which being often used among then across the Middle East and North Africa people. Because of the characteristic of the whole body of the Arabic words, namely connectivity between the characters, thereby the segmentation of An Arabic word is very difficult. We introduced a recurrent neural network to online handwriting Arabic word recognition. The key innovation is a recently produce recurrent neural networks objective function known as connectionist temporal classification. The system consists of an advanced recurrent neural network with an output layer designed for sequence labeling, partially combined with a probabilistic LLM. Experimental results show that unconstrained Arabic words achieve recognition rates about 79%, which is significantly higher than the about 70% using a previously developed hidden markov model based recognition system.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.