Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bounds on List Decoding of Rank-Metric Codes (1301.4643v3)

Published 20 Jan 2013 in cs.IT and math.IT

Abstract: So far, there is no polynomial-time list decoding algorithm (beyond half the minimum distance) for Gabidulin codes. These codes can be seen as the rank-metric equivalent of Reed--Solomon codes. In this paper, we provide bounds on the list size of rank-metric codes in order to understand whether polynomial-time list decoding is possible or whether it works only with exponential time complexity. Three bounds on the list size are proven. The first one is a lower exponential bound for Gabidulin codes and shows that for these codes no polynomial-time list decoding beyond the Johnson radius exists. Second, an exponential upper bound is derived, which holds for any rank-metric code of length $n$ and minimum rank distance $d$. The third bound proves that there exists a rank-metric code over $\Fqm$ of length $n \leq m$ such that the list size is exponential in the length for any radius greater than half the minimum rank distance. This implies that there cannot exist a polynomial upper bound depending only on $n$ and $d$ similar to the Johnson bound in Hamming metric. All three rank-metric bounds reveal significant differences to bounds for codes in Hamming metric.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)