Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Financial Portfolio Optimization: Computationally guided agents to investigate, analyse and invest!? (1301.4194v1)

Published 17 Jan 2013 in q-fin.PM, cs.CE, cs.NE, q-fin.CP, and stat.ML

Abstract: Financial portfolio optimization is a widely studied problem in mathematics, statistics, financial and computational literature. It adheres to determining an optimal combination of weights associated with financial assets held in a portfolio. In practice, it faces challenges by virtue of varying math. formulations, parameters, business constraints and complex financial instruments. Empirical nature of data is no longer one-sided; thereby reflecting upside and downside trends with repeated yet unidentifiable cyclic behaviours potentially caused due to high frequency volatile movements in asset trades. Portfolio optimization under such circumstances is theoretically and computationally challenging. This work presents a novel mechanism to reach an optimal solution by encoding a variety of optimal solutions in a solution bank to guide the search process for the global investment objective formulation. It conceptualizes the role of individual solver agents that contribute optimal solutions to a bank of solutions, a super-agent solver that learns from the solution bank, and, thus reflects a knowledge-based computationally guided agents approach to investigate, analyse and reach to optimal solution for informed investment decisions. Conceptual understanding of classes of solver agents that represent varying problem formulations and, mathematically oriented deterministic solvers along with stochastic-search driven evolutionary and swarm-intelligence based techniques for optimal weights are discussed. Algorithmic implementation is presented by an enhanced neighbourhood generation mechanism in Simulated Annealing algorithm. A framework for inclusion of heuristic knowledge and human expertise from financial literature related to investment decision making process is reflected via introduction of controlled perturbation strategies using a decision matrix for neighbourhood generation.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)