Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Conditional Independence and Markov Properties in Possibility Theory (1301.3900v1)

Published 16 Jan 2013 in cs.AI

Abstract: Conditional independence and Markov properties are powerful tools allowing expression of multidimensional probability distributions by means of low-dimensional ones. As multidimensional possibilistic models have been studied for several years, the demand for analogous tools in possibility theory seems to be quite natural. This paper is intended to be a promotion of de Cooman's measure-theoretic approcah to possibility theory, as this approach allows us to find analogies to many important results obtained in probabilistic framework. First, we recall semi-graphoid properties of conditional possibilistic independence, parameterized by a continuous t-norm, and find sufficient conditions for a class of Archimedean t-norms to have the graphoid property. Then we introduce Markov properties and factorization of possibility distrubtions (again parameterized by a continuous t-norm) and find the relationships between them. These results are accompanied by a number of conterexamples, which show that the assumptions of specific theorems are substantial.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube