Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

On the Use of Skeletons when Learning in Bayesian Networks (1301.3894v1)

Published 16 Jan 2013 in cs.AI

Abstract: In this paper, we present a heuristic operator which aims at simultaneously optimizing the orientations of all the edges in an intermediate Bayesian network structure during the search process. This is done by alternating between the space of directed acyclic graphs (DAGs) and the space of skeletons. The found orientations of the edges are based on a scoring function rather than on induced conditional independences. This operator can be used as an extension to commonly employed search strategies. It is evaluated in experiments with artificial and real-world data.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.