Training Neural Networks with Stochastic Hessian-Free Optimization (1301.3641v3)
Abstract: Hessian-free (HF) optimization has been successfully used for training deep autoencoders and recurrent networks. HF uses the conjugate gradient algorithm to construct update directions through curvature-vector products that can be computed on the same order of time as gradients. In this paper we exploit this property and study stochastic HF with gradient and curvature mini-batches independent of the dataset size. We modify Martens' HF for these settings and integrate dropout, a method for preventing co-adaptation of feature detectors, to guard against overfitting. Stochastic Hessian-free optimization gives an intermediary between SGD and HF that achieves competitive performance on both classification and deep autoencoder experiments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.