Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Learnable Pooling Regions for Image Classification (1301.3516v3)

Published 15 Jan 2013 in cs.CV and cs.LG

Abstract: Biologically inspired, from the early HMAX model to Spatial Pyramid Matching, pooling has played an important role in visual recognition pipelines. Spatial pooling, by grouping of local codes, equips these methods with a certain degree of robustness to translation and deformation yet preserving important spatial information. Despite the predominance of this approach in current recognition systems, we have seen little progress to fully adapt the pooling strategy to the task at hand. This paper proposes a model for learning task dependent pooling scheme -- including previously proposed hand-crafted pooling schemes as a particular instantiation. In our work, we investigate the role of different regularization terms showing that the smooth regularization term is crucial to achieve strong performance using the presented architecture. Finally, we propose an efficient and parallel method to train the model. Our experiments show improved performance over hand-crafted pooling schemes on the CIFAR-10 and CIFAR-100 datasets -- in particular improving the state-of-the-art to 56.29% on the latter.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.