Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Robust Text Detection in Natural Scene Images (1301.2628v3)

Published 11 Jan 2013 in cs.CV, cs.IR, and cs.LG

Abstract: Text detection in natural scene images is an important prerequisite for many content-based image analysis tasks. In this paper, we propose an accurate and robust method for detecting texts in natural scene images. A fast and effective pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSERs) as character candidates using the strategy of minimizing regularized variations. Character candidates are grouped into text candidates by the ingle-link clustering algorithm, where distance weights and threshold of the clustering algorithm are learned automatically by a novel self-training distance metric learning algorithm. The posterior probabilities of text candidates corresponding to non-text are estimated with an character classifier; text candidates with high probabilities are then eliminated and finally texts are identified with a text classifier. The proposed system is evaluated on the ICDAR 2011 Robust Reading Competition dataset; the f measure is over 76% and is significantly better than the state-of-the-art performance of 71%. Experimental results on a publicly available multilingual dataset also show that our proposed method can outperform the other competitive method with the f measure increase of over 9 percent. Finally, we have setup an online demo of our proposed scene text detection system at http://kems.ustb.edu.cn/learning/yin/dtext.

Citations (75)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.