Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Context-based Diversification for Keyword Queries over XML Data (1301.2375v1)

Published 11 Jan 2013 in cs.DB

Abstract: While keyword query empowers ordinary users to search vast amount of data, the ambiguity of keyword query makes it difficult to effectively answer keyword queries, especially for short and vague keyword queries. To address this challenging problem, in this paper we propose an approach that automatically diversifies XML keyword search based on its different contexts in the XML data. Given a short and vague keyword query and XML data to be searched, we firstly derive keyword search candidates of the query by a classifical feature selection model. And then, we design an effective XML keyword search diversification model to measure the quality of each candidate. After that, three efficient algorithms are proposed to evaluate the possible generated query candidates representing the diversified search intentions, from which we can find and return top-$k$ qualified query candidates that are most relevant to the given keyword query while they can cover maximal number of distinct results.At last, a comprehensive evaluation on real and synthetic datasets demonstrates the effectiveness of our proposed diversification model and the efficiency of our algorithms.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.