Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Exact Inference in Networks with Discrete Children of Continuous Parents (1301.2289v1)

Published 10 Jan 2013 in cs.AI

Abstract: Many real life domains contain a mixture of discrete and continuous variables and can be modeled as hybrid Bayesian Networks. Animportant subclass of hybrid BNs are conditional linear Gaussian (CLG) networks, where the conditional distribution of the continuous variables given an assignment to the discrete variables is a multivariate Gaussian. Lauritzen's extension to the clique tree algorithm can be used for exact inference in CLG networks. However, many domains also include discrete variables that depend on continuous ones, and CLG networks do not allow such dependencies to berepresented. No exact inference algorithm has been proposed for these enhanced CLG networks. In this paper, we generalize Lauritzen's algorithm, providing the first "exact" inference algorithm for augmented CLG networks - networks where continuous nodes are conditional linear Gaussians but that also allow discrete children ofcontinuous parents. Our algorithm is exact in the sense that it computes the exact distributions over the discrete nodes, and the exact first and second moments of the continuous ones, up to the accuracy obtained by numerical integration used within thealgorithm. When the discrete children are modeled with softmax CPDs (as is the case in many real world domains) the approximation of the continuous distributions using the first two moments is particularly accurate. Our algorithm is simple to implement and often comparable in its complexity to Lauritzen's algorithm. We show empirically that it achieves substantially higher accuracy than previous approximate algorithms.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube