Papers
Topics
Authors
Recent
2000 character limit reached

Hypothesis Management in Situation-Specific Network Construction (1301.2287v1)

Published 10 Jan 2013 in cs.AI

Abstract: This paper considers the problem of knowledge-based model construction in the presence of uncertainty about the association of domain entities to random variables. Multi-entity Bayesian networks (MEBNs) are defined as a representation for knowledge in domains characterized by uncertainty in the number of relevant entities, their interrelationships, and their association with observables. An MEBN implicitly specifies a probability distribution in terms of a hierarchically structured collection of Bayesian network fragments that together encode a joint probability distribution over arbitrarily many interrelated hypotheses. Although a finite query-complete model can always be constructed, association uncertainty typically makes exact model construction and evaluation intractable. The objective of hypothesis management is to balance tractability against accuracy. We describe an application to the problem of using intelligence reports to infer the organization and activities of groups of military vehicles. Our approach is compared to related work in the tracking and fusion literature.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.