Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Content-Based Video Browsing by Text Region Localization and Classification (1301.2172v1)

Published 10 Jan 2013 in cs.MM and cs.IR

Abstract: The amount of digital video data is increasing over the world. It highlights the need for efficient algorithms that can index, retrieve and browse this data by content. This can be achieved by identifying semantic description captured automatically from video structure. Among these descriptions, text within video is considered as rich features that enable a good way for video indexing and browsing. Unlike most video text detection and extraction methods that treat video sequences as collections of still images, we propose in this paper spatiotemporal. video-text localization and identification approach which proceeds in two main steps: text region localization and text region classification. In the first step we detect the significant appearance of the new objects in a frame by a split and merge processes applied on binarized edge frame pair differences. Detected objects are, a priori, considered as text. They are then filtered according to both local contrast variation and texture criteria in order to get the effective ones. The resulted text regions are classified based on a visual grammar descriptor containing a set of semantic text class regions characterized by visual features. A visual table of content is then generated based on extracted text regions occurring within video sequence enriched by a semantic identification. The experimentation performed on a variety of video sequences shows the efficiency of our approach.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.