Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Pairwise Spanners (1301.1999v1)

Published 9 Jan 2013 in cs.DS

Abstract: Given an undirected $n$-node unweighted graph $G = (V, E)$, a spanner with stretch function $f(\cdot)$ is a subgraph $H\subseteq G$ such that, if two nodes are at distance $d$ in $G$, then they are at distance at most $f(d)$ in $H$. Spanners are very well studied in the literature. The typical goal is to construct the sparsest possible spanner for a given stretch function. In this paper we study pairwise spanners, where we require to approximate the $u$-$v$ distance only for pairs $(u,v)$ in a given set $\cP \subseteq V\times V$. Such $\cP$-spanners were studied before [Coppersmith,Elkin'05] only in the special case that $f(\cdot)$ is the identity function, i.e. distances between relevant pairs must be preserved exactly (a.k.a. pairwise preservers). Here we present pairwise spanners which are at the same time sparser than the best known preservers (on the same $\cP$) and of the best known spanners (with the same $f(\cdot)$). In more detail, for arbitrary $\cP$, we show that there exists a $\mathcal{P}$-spanner of size $O(n(|\cP|\log n){1/4})$ with $f(d)=d+4\log n$. Alternatively, for any $\eps>0$, there exists a $\cP$-spanner of size $O(n|\cP|{1/4}\sqrt{\frac{\log n}{\eps}})$ with $f(d)=(1+\eps)d+4$. We also consider the relevant special case that there is a critical set of nodes $S\subseteq V$, and we wish to approximate either the distances within nodes in $S$ or from nodes in $S$ to any other node. We show that there exists an $(S\times S)$-spanner of size $O(n\sqrt{|S|})$ with $f(d)=d+2$, and an $(S\times V)$-spanner of size $O(n\sqrt{|S|\log n})$ with $f(d)=d+2\log n$. All the mentioned pairwise spanners can be constructed in polynomial time.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.