Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Influence Of The User Importance Measure On The Group Evolution Discovery (1301.1534v1)

Published 8 Jan 2013 in cs.SI and physics.soc-ph

Abstract: One of the most interesting topics in social network science are social groups. Their extraction, dynamics and evolution. One year ago the method for group evolution discovery (GED) was introduced. The GED method during extraction process takes into account both the group members quality and quantity. The quality is reflected by user importance measure. In this paper the influence of different user importance measures on the results of the GED method is examined and presented. The results indicate that using global measures like social position (page rank) allows to achieve more precise results than using local measures like degree centrality or no measure at all.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.