Papers
Topics
Authors
Recent
2000 character limit reached

Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures (1301.1071v1)

Published 6 Jan 2013 in cs.DC and cs.NA

Abstract: The QR factorization and the SVD are two fundamental matrix decompositions with applications throughout scientific computing and data analysis. For matrices with many more rows than columns, so-called "tall-and-skinny matrices," there is a numerically stable, efficient, communication-avoiding algorithm for computing the QR factorization. It has been used in traditional high performance computing and grid computing environments. For MapReduce environments, existing methods to compute the QR decomposition use a numerically unstable approach that relies on indirectly computing the Q factor. In the best case, these methods require only two passes over the data. In this paper, we describe how to compute a stable tall-and-skinny QR factorization on a MapReduce architecture in only slightly more than 2 passes over the data. We can compute the SVD with only a small change and no difference in performance. We present a performance comparison between our new direct TSQR method, a standard unstable implementation for MapReduce (Cholesky QR), and the classic stable algorithm implemented for MapReduce (Householder QR). We find that our new stable method has a large performance advantage over the Householder QR method. This holds both in a theoretical performance model as well as in an actual implementation.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.