Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the Low SNR Capacity of Maximum Ratio Combining over Rician Fading Channels with Full Channel State Information (1301.0730v1)

Published 4 Jan 2013 in cs.IT and math.IT

Abstract: In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as (L Omega/(K+L)) SNR log(1/SNR), where Omega is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.