Inductive Policy Selection for First-Order MDPs (1301.0614v1)
Abstract: We select policies for large Markov Decision Processes (MDPs) with compact first-order representations. We find policies that generalize well as the number of objects in the domain grows, potentially without bound. Existing dynamic-programming approaches based on flat, propositional, or first-order representations either are impractical here or do not naturally scale as the number of objects grows without bound. We implement and evaluate an alternative approach that induces first-order policies using training data constructed by solving small problem instances using PGraphplan (Blum & Langford, 1999). Our policies are represented as ensembles of decision lists, using a taxonomic concept language. This approach extends the work of Martin and Geffner (2000) to stochastic domains, ensemble learning, and a wider variety of problems. Empirically, we find "good" policies for several stochastic first-order MDPs that are beyond the scope of previous approaches. We also discuss the application of this work to the relational reinforcement-learning problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.