Papers
Topics
Authors
Recent
2000 character limit reached

Anytime State-Based Solution Methods for Decision Processes with non-Markovian Rewards (1301.0606v1)

Published 12 Dec 2012 in cs.AI

Abstract: A popular approach to solving a decision process with non-Markovian rewards (NMRDP) is to exploit a compact representation of the reward function to automatically translate the NMRDP into an equivalent Markov decision process (MDP) amenable to our favorite MDP solution method. The contribution of this paper is a representation of non-Markovian reward functions and a translation into MDP aimed at making the best possible use of state-based anytime algorithms as the solution method. By explicitly constructing and exploring only parts of the state space, these algorithms are able to trade computation time for policy quality, and have proven quite effective in dealing with large MDPs. Our representation extends future linear temporal logic (FLTL) to express rewards. Our translation has the effect of embedding model-checking in the solution method. It results in an MDP of the minimal size achievable without stepping outside the anytime framework, and consequently in better policies by the deadline.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.