Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal Time Bounds for Approximate Clustering (1301.0587v1)

Published 12 Dec 2012 in cs.DS, cs.LG, and stat.ML

Abstract: Clustering is a fundamental problem in unsupervised learning, and has been studied widely both as a problem of learning mixture models and as an optimization problem. In this paper, we study clustering with respect the emph{k-median} objective function, a natural formulation of clustering in which we attempt to minimize the average distance to cluster centers. One of the main contributions of this paper is a simple but powerful sampling technique that we call emph{successive sampling} that could be of independent interest. We show that our sampling procedure can rapidly identify a small set of points (of size just O(klog{n/k})) that summarize the input points for the purpose of clustering. Using successive sampling, we develop an algorithm for the k-median problem that runs in O(nk) time for a wide range of values of k and is guaranteed, with high probability, to return a solution with cost at most a constant factor times optimal. We also establish a lower bound of Omega(nk) on any randomized constant-factor approximation algorithm for the k-median problem that succeeds with even a negligible (say 1/100) probability. Thus we establish a tight time bound of Theta(nk) for the k-median problem for a wide range of values of k. The best previous upper bound for the problem was O(nk), where the O-notation hides polylogarithmic factors in n and k. The best previous lower bound of O(nk) applied only to deterministic k-median algorithms. While we focus our presentation on the k-median objective, all our upper bounds are valid for the k-means objective as well. In this context our algorithm compares favorably to the widely used k-means heuristic, which requires O(nk) time for just one iteration and provides no useful approximation guarantees.

Citations (115)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.