Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finding Optimal Bayesian Networks (1301.0561v1)

Published 12 Dec 2012 in cs.AI

Abstract: In this paper, we derive optimality results for greedy Bayesian-network search algorithms that perform single-edge modifications at each step and use asymptotically consistent scoring criteria. Our results extend those of Meek (1997) and Chickering (2002), who demonstrate that in the limit of large datasets, if the generative distribution is perfect with respect to a DAG defined over the observable variables, such search algorithms will identify this optimal (i.e. generative) DAG model. We relax their assumption about the generative distribution, and assume only that this distribution satisfies the {em composition property} over the observable variables, which is a more realistic assumption for real domains. Under this assumption, we guarantee that the search algorithms identify an {em inclusion-optimal} model; that is, a model that (1) contains the generative distribution and (2) has no sub-model that contains this distribution. In addition, we show that the composition property is guaranteed to hold whenever the dependence relationships in the generative distribution can be characterized by paths between singleton elements in some generative graphical model (e.g. a DAG, a chain graph, or a Markov network) even when the generative model includes unobserved variables, and even when the observed data is subject to selection bias.

Citations (152)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.