Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Construction of the Inclusion Boundary Neighbourhood for Markov Equivalence Classes of Bayesian Network Structures (1301.0553v1)

Published 12 Dec 2012 in cs.AI

Abstract: The problem of learning Markov equivalence classes of Bayesian network structures may be solved by searching for the maximum of a scoring metric in a space of these classes. This paper deals with the definition and analysis of one such search space. We use a theoretically motivated neighbourhood, the inclusion boundary, and represent equivalence classes by essential graphs. We show that this search space is connected and that the score of the neighbours can be evaluated incrementally. We devise a practical way of building this neighbourhood for an essential graph that is purely graphical and does not explicitely refer to the underlying independences. We find that its size can be intractable, depending on the complexity of the essential graph of the equivalence class. The emphasis is put on the potential use of this space with greedy hill -climbing search

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.