Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 70 tok/s
Gemini 2.5 Flash 169 tok/s Pro
Gemini 2.5 Pro 47 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Crossings in Grid Drawings (1301.0303v2)

Published 2 Jan 2013 in math.CO and cs.CG

Abstract: We prove crossing number inequalities for geometric graphs whose vertex sets are taken from a d-dimensional grid of volume N and give applications of these inequalities to counting the number of non-crossing geometric graphs that can be drawn on such grids. In particular, we show that any geometric graph with m >= 8N edges and with vertices on a 3D integer grid of volume N, has \Omega((m2/n)\log(m/n)) crossings. In d-dimensions, with d >= 4, this bound becomes \Omega(m2/n). We provide matching upper bounds for all d. Finally, for d >= 4 the upper bound implies that the maximum number of crossing-free geometric graphs with vertices on some d-dimensional grid of volume N is n\Theta(n). In 3 dimensions it remains open to improve the trivial bounds, namely, the 2\Omega(n) lower bound and the nO(n) upper bound.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.