Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lattice Sparsification and the Approximate Closest Vector Problem (1212.6781v1)

Published 30 Dec 2012 in cs.DS and cs.CC

Abstract: We give a deterministic algorithm for solving the (1+eps)-approximate Closest Vector Problem (CVP) on any n dimensional lattice and any norm in 2{O(n)}(1+1/eps)n time and 2n poly(n) space. Our algorithm builds on the lattice point enumeration techniques of Micciancio and Voulgaris (STOC 2010) and Dadush, Peikert and Vempala (FOCS 2011), and gives an elegant, deterministic alternative to the "AKS Sieve" based algorithms for (1+eps)-CVP (Ajtai, Kumar, and Sivakumar; STOC 2001 and CCC 2002). Furthermore, assuming the existence of a poly(n)-space and 2{O(n)} time algorithm for exact CVP in the l_2 norm, the space complexity of our algorithm can be reduced to polynomial. Our main technical contribution is a method for "sparsifying" any input lattice while approximately maintaining its metric structure. To this end, we employ the idea of random sublattice restrictions, which was first employed by Khot (FOCS 2003) for the purpose of proving hardness for Shortest Vector Problem (SVP) under l_p norms.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube