Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The degrees of freedom of the Group Lasso for a General Design (1212.6478v1)

Published 28 Dec 2012 in cs.IT and math.IT

Abstract: In this paper, we are concerned with regression problems where covariates can be grouped in nonoverlapping blocks, and where only a few of them are assumed to be active. In such a situation, the group Lasso is an at- tractive method for variable selection since it promotes sparsity of the groups. We study the sensitivity of any group Lasso solution to the observations and provide its precise local parameterization. When the noise is Gaussian, this allows us to derive an unbiased estimator of the degrees of freedom of the group Lasso. This result holds true for any fixed design, no matter whether it is under- or overdetermined. With these results at hand, various model selec- tion criteria, such as the Stein Unbiased Risk Estimator (SURE), are readily available which can provide an objectively guided choice of the optimal group Lasso fit.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.