Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A universal assortativity measure for network analysis (1212.6456v1)

Published 28 Dec 2012 in physics.soc-ph, cs.SI, and physics.data-an

Abstract: Characterizing the connectivity tendency of a network is a fundamental problem in network science. The traditional and well-known assortativity coefficient is calculated on a per-network basis, which is of little use to partial connection tendency of a network. This paper proposes a universal assortativity coefficient(UAC), which is based on the unambiguous definition of each individual edge's contribution to the global assortativity coefficient (GAC). It is able to reveal the connection tendency of microscopic, mesoscopic, macroscopic structures and any given part of a network. Applying UAC to real world networks, we find that, contrary to the popular expectation, most networks (notably the AS-level Internet topology) have markedly more assortative edges/nodes than dissortaive ones despite their global dissortativity. Consequently, networks can be categorized along two dimensions--single global assortativity and local assortativity statistics. Detailed anatomy of the AS-level Internet topology further illustrates how UAC can be used to decipher the hidden patterns of connection tendencies on different scales.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.