Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Tangent Bundle Manifold Learning via Grassmann&Stiefel Eigenmaps (1212.6031v1)

Published 25 Dec 2012 in cs.LG

Abstract: One of the ultimate goals of Manifold Learning (ML) is to reconstruct an unknown nonlinear low-dimensional manifold embedded in a high-dimensional observation space by a given set of data points from the manifold. We derive a local lower bound for the maximum reconstruction error in a small neighborhood of an arbitrary point. The lower bound is defined in terms of the distance between tangent spaces to the original manifold and the estimated manifold at the considered point and reconstructed point, respectively. We propose an amplification of the ML, called Tangent Bundle ML, in which the proximity not only between the original manifold and its estimator but also between their tangent spaces is required. We present a new algorithm that solves this problem and gives a new solution for the ML also.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube