Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semi-explicit Parareal method based on convergence acceleration technique (1212.4703v2)

Published 19 Dec 2012 in cs.SY, math.CA, and math.NA

Abstract: The Parareal algorithm is used to solve time-dependent problems considering multiple solvers that may work in parallel. The key feature is a initial rough approximation of the solution that is iteratively refined by the parallel solvers. We report a derivation of the Parareal method that uses a convergence acceleration technique to improve the accuracy of the solution. Our approach uses firstly an explicit ODE solver to perform the parallel computations with different time-steps and then, a decomposition of the solution into specific convergent series, based on an extrapolation method, allows to refine the precision of the solution. Our proposed method exploits basic explicit integration methods, such as for example the explicit Euler scheme, in order to preserve the simplicity of the global parallel algorithm. The first part of the paper outlines the proposed method applied to the simple explicit Euler scheme and then the derivation of the classical Parareal algorithm is discussed and illustrated with numerical examples.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)