Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

State-Dependent Multiple Access Channels with Feedback (1212.3550v1)

Published 14 Dec 2012 in cs.IT and math.IT

Abstract: In this paper, we examine discrete memoryless Multiple Access Channels (MACs) with two-sided feedback in the presence of two correlated channel states that are correlated in the sense of Slepian-Wolf (SW). We find achievable rate region for this channel when the states are provided non-causally to the transmitters and show that our achievable rate region subsumes Cover-Leung achievable rate for the discrete memoryless MAC with two-sided feedback as its special case. We also find the capacity region of discrete memoryless MAC with two-sided feedback and with SW-type correlated states available causally or strictly causally to the transmitters. We also study discrete memoryless MAC with partial feedback in the presence of two SW-type correlated channel states that are provided non-causally, causally, or strictly causally to the transmitters. An achievable rate region is found when channel states are non-causally provided to the transmitters whereas capacity regions are characterized when channel states are causally, or strictly causally available at the transmitters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.