Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lossless Data Compression at Finite Blocklengths (1212.2668v1)

Published 11 Dec 2012 in cs.IT, math.IT, and math.PR

Abstract: This paper provides an extensive study of the behavior of the best achievable rate (and other related fundamental limits) in variable-length lossless compression. In the non-asymptotic regime, the fundamental limits of fixed-to-variable lossless compression with and without prefix constraints are shown to be tightly coupled. Several precise, quantitative bounds are derived, connecting the distribution of the optimal codelengths to the source information spectrum, and an exact analysis of the best achievable rate for arbitrary sources is given. Fine asymptotic results are proved for arbitrary (not necessarily prefix) compressors on general mixing sources. Non-asymptotic, explicit Gaussian approximation bounds are established for the best achievable rate on Markov sources. The source dispersion and the source varentropy rate are defined and characterized. Together with the entropy rate, the varentropy rate serves to tightly approximate the fundamental non-asymptotic limits of fixed-to-variable compression for all but very small blocklengths.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.