Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Practically Perfect (1212.2503v1)

Published 19 Oct 2012 in cs.AI and stat.ML

Abstract: The property of perfectness plays an important role in the theory of Bayesian networks. First, the existence of perfect distributions for arbitrary sets of variables and directed acyclic graphs implies that various methods for reading independence from the structure of the graph (e.g., Pearl, 1988; Lauritzen, Dawid, Larsen & Leimer, 1990) are complete. Second, the asymptotic reliability of various search methods is guaranteed under the assumption that the generating distribution is perfect (e.g., Spirtes, Glymour & Scheines, 2000; Chickering & Meek, 2002). We provide a lower-bound on the probability of sampling a non-perfect distribution when using a fixed number of bits to represent the parameters of the Bayesian network. This bound approaches zero exponentially fast as one increases the number of bits used to represent the parameters. This result implies that perfect distributions with fixed-length representations exist. We also provide a lower-bound on the number of bits needed to guarantee that a distribution sampled from a uniform Dirichlet distribution is perfect with probability greater than 1/2. This result is useful for constructing randomized reductions for hardness proofs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.