Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Phase Transition of Tractability in Constraint Satisfaction and Bayesian Network Inference (1212.2485v1)

Published 19 Oct 2012 in cs.AI and cs.DS

Abstract: There has been great interest in identifying tractable subclasses of NP complete problems and designing efficient algorithms for these tractable classes. Constraint satisfaction and Bayesian network inference are two examples of such problems that are of great importance in AI and algorithms. In this paper we study, under the frameworks of random constraint satisfaction problems and random Bayesian networks, a typical tractable subclass characterized by the treewidth of the problems. We show that the property of having a bounded treewidth for CSPs and Bayesian network inference problem has a phase transition that occurs while the underlying structures of problems are still sparse. This implies that algorithms making use of treewidth based structural knowledge only work efficiently in a limited range of random instance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube