Papers
Topics
Authors
Recent
2000 character limit reached

The Information Bottleneck EM Algorithm (1212.2460v1)

Published 19 Oct 2012 in cs.LG and stat.ML

Abstract: Learning with hidden variables is a central challenge in probabilistic graphical models that has important implications for many real-life problems. The classical approach is using the Expectation Maximization (EM) algorithm. This algorithm, however, can get trapped in local maxima. In this paper we explore a new approach that is based on the Information Bottleneck principle. In this approach, we view the learning problem as a tradeoff between two information theoretic objectives. The first is to make the hidden variables uninformative about the identity of specific instances. The second is to make the hidden variables informative about the observed attributes. By exploring different tradeoffs between these two objectives, we can gradually converge on a high-scoring solution. As we show, the resulting, Information Bottleneck Expectation Maximization (IB-EM) algorithm, manages to find solutions that are superior to standard EM methods.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.