Emergent Mind

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes

(1212.2126)
Published Dec 10, 2012 in stat.ML

Abstract

The classical mixture of Gaussians model is related to K-means via small-variance asymptotics: as the covariances of the Gaussians tend to zero, the negative log-likelihood of the mixture of Gaussians model approaches the K-means objective, and the EM algorithm approaches the K-means algorithm. Kulis & Jordan (2012) used this observation to obtain a novel K-means-like algorithm from a Gibbs sampler for the Dirichlet process (DP) mixture. We instead consider applying small-variance asymptotics directly to the posterior in Bayesian nonparametric models. This framework is independent of any specific Bayesian inference algorithm, and it has the major advantage that it generalizes immediately to a range of models beyond the DP mixture. To illustrate, we apply our framework to the feature learning setting, where the beta process and Indian buffet process provide an appropriate Bayesian nonparametric prior. We obtain a novel objective function that goes beyond clustering to learn (and penalize new) groupings for which we relax the mutual exclusivity and exhaustivity assumptions of clustering. We demonstrate several other algorithms, all of which are scalable and simple to implement. Empirical results demonstrate the benefits of the new framework.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.