Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The geometric stability of Voronoi diagrams in normed spaces which are not uniformly convex (1212.1094v2)

Published 4 Dec 2012 in cs.CG and math.FA

Abstract: The Voronoi diagram is a geometric object which is widely used in many areas. Recently it has been shown that under mild conditions Voronoi diagrams have a certain continuity property: small perturbations of the sites yield small perturbations in the shapes of the corresponding Voronoi cells. However, this result is based on the assumption that the ambient normed space is uniformly convex. Unfortunately, simple counterexamples show that if uniform convexity is removed, then instability can occur. Since Voronoi diagrams in normed spaces which are not uniformly convex do appear in theory and practice, e.g., in the plane with the Manhattan (ell_1) distance, it is natural to ask whether the stability property can be generalized to them, perhaps under additional assumptions. This paper shows that this is indeed the case assuming the unit sphere of the space has a certain (non-exotic) structure and the sites satisfy a certain "general position" condition related to it. The condition on the unit sphere is that it can be decomposed into at most one "rotund part" and at most finitely many non-degenerate convex parts. Along the way certain topological properties of Votonoi cells (e.g., that the induced bisectors are not "fat") are proved.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.