Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

G-invariant Persistent Homology (1212.0655v5)

Published 4 Dec 2012 in math.AT, cs.CG, and cs.CV

Abstract: Classical persistent homology is a powerful mathematical tool for shape comparison. Unfortunately, it is not tailored to study the action of transformation groups that are different from the group Homeo(X) of all self-homeomorphisms of a topological space X. This fact restricts its use in applications. In order to obtain better lower bounds for the natural pseudo-distance d_G associated with a subgroup G of Homeo(X), we need to adapt persistent homology and consider G-invariant persistent homology. Roughly speaking, the main idea consists in defining persistent homology by means of a set of chains that is invariant under the action of G. In this paper we formalize this idea, and prove the stability of the persistent Betti number functions in G-invariant persistent homology with respect to the natural pseudo-distance d_G. We also show how G-invariant persistent homology could be used in applications concerning shape comparison, when the invariance group is a proper subgroup of the group of all self-homeomorphisms of a topological space. In this paper we will assume that the space X is triangulable, in order to guarantee that the persistent Betti number functions are finite without using any tameness assumption.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)