Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An inverse iteration method for eigenvalue problems with eigenvector nonlinearities (1212.0417v1)

Published 3 Dec 2012 in cs.NA and math.NA

Abstract: Consider a symmetric matrix $A(v)\in\RR{n\times n}$ depending on a vector $v\in\RRn$ and satisfying the property $A(\alpha v)=A(v)$ for any $\alpha\in\RR\backslash{0}$. We will here study the problem of finding $(\lambda,v)\in\RR\times \RRn\backslash{0}$ such that $(\lambda,v)$ is an eigenpair of the matrix $A(v)$ and we propose a generalization of inverse iteration for eigenvalue problems with this type of eigenvector nonlinearity. The convergence of the proposed method is studied and several convergence properties are shown to be analogous to inverse iteration for standard eigenvalue problems, including local convergence properties. The algorithm is also shown to be equivalent to a particular discretization of an associated ordinary differential equation, if the shift is chosen in a particular way. The algorithm is adapted to a variant of the Schr\"odinger equation known as the Gross-Pitaevskii equation. We use numerical simulations toillustrate the convergence properties, as well as the efficiency of the algorithm and the adaption.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.