Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

The structure of Renyi entropic inequalities (1212.0248v2)

Published 2 Dec 2012 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: We investigate the universal inequalities relating the alpha-Renyi entropies of the marginals of a multi-partite quantum state. This is in analogy to the same question for the Shannon and von Neumann entropy (alpha=1) which are known to satisfy several non-trivial inequalities such as strong subadditivity. Somewhat surprisingly, we find for 0<alpha\<1, that the only inequality is non-negativity: In other words, any collection of non-negative numbers assigned to the nonempty subsets of n parties can be arbitrarily well approximated by the alpha-entropies of the 2^n-1 marginals of a quantum state. For alpha\>1 we show analogously that there are no non-trivial homogeneous (in particular no linear) inequalities. On the other hand, it is known that there are further, non-linear and indeed non-homogeneous, inequalities delimiting the alpha-entropies of a general quantum state. Finally, we also treat the case of Renyi entropies restricted to classical states (i.e. probability distributions), which in addition to non-negativity are also subject to monotonicity. For alpha different from 0 and 1 we show that this is the only other homogeneous relation.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.