On the Use of Non-Stationary Policies for Stationary Infinite-Horizon Markov Decision Processes (1211.6898v1)
Abstract: We consider infinite-horizon stationary $\gamma$-discounted Markov Decision Processes, for which it is known that there exists a stationary optimal policy. Using Value and Policy Iteration with some error $\epsilon$ at each iteration, it is well-known that one can compute stationary policies that are $\frac{2\gamma}{(1-\gamma)2}\epsilon$-optimal. After arguing that this guarantee is tight, we develop variations of Value and Policy Iteration for computing non-stationary policies that can be up to $\frac{2\gamma}{1-\gamma}\epsilon$-optimal, which constitutes a significant improvement in the usual situation when $\gamma$ is close to 1. Surprisingly, this shows that the problem of "computing near-optimal non-stationary policies" is much simpler than that of "computing near-optimal stationary policies".
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.