Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A LASSO-Penalized BIC for Mixture Model Selection (1211.6451v1)

Published 27 Nov 2012 in stat.ME, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: The efficacy of family-based approaches to mixture model-based clustering and classification depends on the selection of parsimonious models. Current wisdom suggests the Bayesian information criterion (BIC) for mixture model selection. However, the BIC has well-known limitations, including a tendency to overestimate the number of components as well as a proclivity for, often drastically, underestimating the number of components in higher dimensions. While the former problem might be soluble through merging components, the latter is impossible to mitigate in clustering and classification applications. In this paper, a LASSO-penalized BIC (LPBIC) is introduced to overcome this problem. This approach is illustrated based on applications of extensions of mixtures of factor analyzers, where the LPBIC is used to select both the number of components and the number of latent factors. The LPBIC is shown to match or outperform the BIC in several situations.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.