Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hierarchic Power Allocation for Spectrum Sharing in OFDM-Based Cognitive Radio Networks (1211.5857v1)

Published 26 Nov 2012 in cs.GT and cs.NI

Abstract: In this paper, a Stackelberg game is built to model the hierarchic power allocation of primary user (PU) network and secondary user (SU) network in OFDM-based cognitive radio (CR) networks. We formulate the PU and the SUs as the leader and the followers, respectively. We consider two constraints: the total power constraint and the interference-to-signal ratio (ISR) constraint, in which the ratio between the accumulated interference and the received signal power at each PU should not exceed certain threshold. Firstly, we focus on the single-PU and multi-SU scenario. Based on the analysis of the Stackelberg Equilibrium (SE) for the proposed Stackelberg game, an analytical hierarchic power allocation method is proposed when the PU can acquire the additional information to anticipate SUs' reaction. The analytical algorithm has two steps: 1) The PU optimizes its power allocation with considering the reaction of SUs to its action. In the power optimization of the PU, there is a sub-game for power allocation of SUs given fixed transmit power of the PU. The existence and uniqueness for the Nash Equilibrium (NE) of the sub-game are investigated. We also propose an iterative algorithm to obtain the NE, and derive the closed-form solutions of NE for the perfectly symmetric channel. 2) The SUs allocate the power according to the NE of the sub-game given PU's optimal power allocation. Furthermore, we design two distributed iterative algorithms for the general channel even when private information of the SUs is unavailable at the PU. The first iterative algorithm has a guaranteed convergence performance, and the second iterative algorithm employs asynchronous power update to improve time efficiency. Finally, we extend to the multi-PU and multi-SU scenario, and a distributed iterative algorithm is presented.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.