Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Bacterial Foraging Algorithm For Solving Job Shop Scheduling Problems (1211.4971v1)

Published 21 Nov 2012 in cs.NE

Abstract: Bio-Inspired computing is the subset of Nature-Inspired computing. Job Shop Scheduling Problem is categorized under popular scheduling problems. In this research work, Bacterial Foraging Optimization was hybridized with Ant Colony Optimization and a new technique Hybrid Bacterial Foraging Optimization for solving Job Shop Scheduling Problem was proposed. The optimal solutions obtained by proposed Hybrid Bacterial Foraging Optimization algorithms are much better when compared with the solutions obtained by Bacterial Foraging Optimization algorithm for well-known test problems of different sizes. From the implementation of this research work, it could be observed that the proposed Hybrid Bacterial Foraging Optimization was effective than Bacterial Foraging Optimization algorithm in solving Job Shop Scheduling Problems. Hybrid Bacterial Foraging Optimization is used to implement real world Job Shop Scheduling Problems.

Citations (27)

Summary

We haven't generated a summary for this paper yet.