Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Application of three graph Laplacian based semi-supervised learning methods to protein function prediction problem (1211.4289v3)

Published 19 Nov 2012 in cs.LG, cs.CE, q-bio.QM, and stat.ML

Abstract: Protein function prediction is the important problem in modern biology. In this paper, the un-normalized, symmetric normalized, and random walk graph Laplacian based semi-supervised learning methods will be applied to the integrated network combined from multiple networks to predict the functions of all yeast proteins in these multiple networks. These multiple networks are network created from Pfam domain structure, co-participation in a protein complex, protein-protein interaction network, genetic interaction network, and network created from cell cycle gene expression measurements. Multiple networks are combined with fixed weights instead of using convex optimization to determine the combination weights due to high time complexity of convex optimization method. This simple combination method will not affect the accuracy performance measures of the three semi-supervised learning methods. Experiment results show that the un-normalized and symmetric normalized graph Laplacian based methods perform slightly better than random walk graph Laplacian based method for integrated network. Moreover, the accuracy performance measures of these three semi-supervised learning methods for integrated network are much better than the best accuracy performance measures of these three methods for the individual network.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube